A Generalized Additive Model Combining Principal Component Analysis for PM2.5 Concentration Estimation
نویسندگان
چکیده
As an extension of the traditional Land Use Regression (LUR) modelling, the generalized additive model (GAM) was developed in recent years to explore the non-linear relationships between PM2.5 concentrations and the factors impacting it. However, these studies did not consider the loss of information regarding predictor variables. To address this challenge, a generalized additive model combining principal component analysis (PCA–GAM) was proposed to estimate PM2.5 concentrations in this study. The reliability of PCA–GAM for estimating PM2.5 concentrations was tested in the Beijing-Tianjin-Hebei (BTH) region over a one-year period as a case study. The results showed that PCA–GAM outperforms traditional LUR modelling with relatively higher adjusted R2 (0.94) and lower RMSE (4.08 μg/m3). The CV-adjusted R2 (0.92) is high and close to the model-adjusted R2, proving the robustness of the PCA–GAM model. The PCA–GAM model enhances PM2.5 estimate accuracy by improving the usage of the effective predictor variables. Therefore, it can be concluded that PCA–GAM is a promising method for air pollution mapping and could be useful for decision makers taking a series of measures to combat air pollution.
منابع مشابه
Estimation of genetic parameters for quantitative and qualitative traits in cotton cultivars (Gossypium hirsutum L. & Gossypium barbadense L.) and new scaling test of additive– dominance model
A complete diallel cross of nine cotton genotypes (Gossypium hirsutum L. & Gossypium barbadense L.) viz Delinter, Sindose-80, Omoumi, Bulgare-539, Termez-14, Red leaf (Native species), B-557, Brown fiber and Siokra-324 having diverse genetic origins was conducted over two years to determine the potential for the improvement of yield, its components, oil and fiber qual...
متن کاملPrincipal components and generalized linear modeling in the correlation between hospital admissions and air pollution
OBJECTIVE To analyze the association between concentrations of air pollutants and admissions for respiratory causes in children. METHODS Ecological time series study. Daily figures for hospital admissions of children aged < 6, and daily concentrations of air pollutants (PM10, SO2, NO2, O3 and CO) were analyzed in the Região da Grande Vitória, ES, Southeastern Brazil, from January 2005 to Decemb...
متن کاملSatellite Based Mapping of Ground PM2.5 Concentration Using Generalized Additive Modeling
Satellite-based PM2.5 concentration estimation is growing as a popular solution to map the PM2.5 spatial distribution due to the insufficiency of ground-based monitoring stations. However, those applications usually suffer from the simple hypothesis that the influencing factors are linearly correlated with PM2.5 concentrations, though non-linear mechanisms indeed exist in their interactions. Ta...
متن کاملRelationship between fine particulate matter, weather condition and daily non-accidental mortality in Shanghai, China: A Bayesian approach
There are concerns that the reported association of ambient fine particulate matter (PM2.5) with mortality might be a mixture of PM2.5 and weather conditions. We evaluated the effects of extreme weather conditions and weather types on mortality as well as their interactions with PM2.5 concentrations in a time series study. Daily non-accidental deaths, individual demographic information, daily a...
متن کاملEstimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data
Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi'an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017